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Abstract 

Executive Order (EO) 14028, Improving the Nation’s Cybersecurity, 12 May 2021, di-
rects the National Institute of Standards and Technology (NIST) to recommend minimum 
standards for software testing within 60 days. This document describes eleven recommen-
dations for software verification techniques as well as providing supplemental information 
about the techniques and references for further information. It recommends the following 
techniques: 

• Threat modeling to look for design-level security issues 
• Automated testing for consistency and to minimize human effort 
• Static code scanning to look for top bugs 
• Heuristic tools to look for possible hardcoded secrets 
• Use of built-in checks and protections 
• “Black box” test cases 
• Code-based structural test cases 
• Historical test cases 
• Fuzzing 
• Web app scanners, if applicable 
• Address included code (libraries, packages, services) 
The document does not address the totality of software verification, but instead recom-

mends techniques that are broadly applicable and form the minimum standards. 
The document was developed by NIST in consultation with the National Security Agency. 

Additionally, we received input from numerous outside organizations through papers sub-
mitted to a NIST workshop on the Executive Order held in early June, 2021 and discussion 
at the workshop as well as follow up with several of the submitters. 

Keywords 

software assurance; verification; testing; static analysis; fuzzing; code review; software 
security. 

Disclaimer 

Any mention of commercial products or reference to commercial organizations is for infor-
mation only; it does not imply recommendation or endorsement by NIST, nor is it intended 
to imply that the products mentioned are necessarily the best available for the purpose. 

Additional Information 

For additional information on NIST’s Cybersecurity programs, projects and publica-
tions, visit the Computer Security Resource Center. Information on other efforts at NIST 
and in the Information Technology Laboratory (ITL) is also available. 

This document was written at the National Institute of Standards and Technology by 
employees of the Federal Government in the course of their official duties. Pursuant to 
Title 17, Section 105 of the United States Code, this is not subject to copyright protection 
and is in the public domain. 

We would appreciate acknowledgment if this document is used. 
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1. Introduction 

1.1 Overview 

To ensure that software is sufficiently safe and secure, software must be designed, built, de-
livered, and maintained well. Frequent and thorough verification by developers as early as 
possible in the software development life cycle (SDLC) is one critical element of software 
security assurance. At its highest conceptual level, we may view verification as a mental 
discipline to increase software quality [1, p. 10]. As NIST’s Secure Software Develop-
ment Framework (SSDF) says, verification is used “to identify vulnerabilities and verify 
compliance with security requirements” [2, PW.7 and PW.8]. According to ISO/IEC/IEEE 
12207:2017 [3, 3.1.72] verification, which is sometimes informally called “testing,” en-
compasses many static and active assurance techniques, tools, and related processes. They 
must be employed alongside other methods to ensure a high-level of software quality. 

This document recommends minimum standards of software verification by software 
producers. No single software security verification standard can encompass all types of 
software and be both specific and prescriptive while supporting efficient and effective verifi-
cation. Thus, this document recommends guidelines for software producers to use in creat-
ing their own processes. To be most effective, the process must be very specific and tailored 
to the software products, technology (e.g., language and platform), toolchain, and develop-
ment lifecycle model. For information about how verification fits into the larger software 
development process, see NIST’s Secure Software Development Framework (SSDF) [2]. 

1.2 Charge 

This document is a response to the 12 May 2021 Executive Order (EO) 14028 on Improving 
the Nation’s Cybersecurity [4]. This document responds to Sec. 4. Enhancing Software 
Supply Chain Security, subsection (r): 

“. . . guidelines recommending minimum standards for vendors’ testing of their 
software source code, including identifying recommended types of manual or au-
tomated testing (such as code review tools, static and dynamic analysis, software 
composition tools, and penetration testing).” [4, 4(r)] 

1.3 Scope 

This section clarifies or interprets terms that form the basis for the scope of this document. 
We define “software” as executable computer programs. 
We exclude from our scope ancillary yet vital material such as configuration files, file 

or execution permissions, operational procedures, and hardware. 

Many kinds of software require specialized testing regimes in addition to the minimum 
standards recommended in Sec. 2. For example, real time software, firmware (microcode), 
embedded/cyberphysical software, distributed algorithms, machine learning (ML) or neural 
net code, control systems, mobile applications, safety-critical systems, and cryptographic 
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software. We do not address specialized testing. We do suggest minimum testing tech-
niques to use for software that is connected to a network and parallel/multi-threaded soft-
ware. 

As a special note, testing requirements for safety-critical systems are addressed by their 
respective regulatory agencies. 

While the EO uses the term “software source code,” the intent is much broader and 
includes software in general including binaries, bytecode, and executables, such as libraries 
and packages. We acknowledge that it is not possible to examine these as thoroughly and 
efficiently as human-readable source code. 

We exclude from consideration here the verification or validation of security functional 
requirements and specifications, except as references for testing. 

We understand the informal term “testing” as any technique or procedure performed 
on the software itself to gain assurance that the software will perform as desired, has the 
necessary properties, and has no important vulnerabilities. We use the ISO/IEC/IEEE term 
“verification” instead. Verification includes methods such as static analysis and code re-
view, in addition to dynamic analysis or running programs (“testing” in a narrower sense). 

We exclude from our treatment of verification other key elements of software devel-
opment that contribute to software assurance, such as programmer training, expertise, or 
certification, evidence from prior or subsequent software products, process, correct-by-
construction or model-based methods, supply chain and compilation assurance techniques, 
and failures reported during operational use. 

Verification assumes standard language semantics, correct and robust compilation or 
interpretation engines, and a reliable and accurate execution environment, such as contain-
ers, virtual machines, operating systems, and hardware. Verification may or may not be 
performed in the intended operational environment. 

Note that verification must be based on some references, such as the software specifi-
cations, coding standards (e.g., Motor Industry Software Reliability Association (MISRA) 
C [5]), collections of properties, security policies, or lists of common weaknesses. 

While the EO uses the term “vendors’ testing,” the intent is much broader and includes 
developers as well. A developer and a vendor may be the same entity, but many ven-
dors include software from outside sources. A software vendor may redo verification on 
software packages developed by other entities. Although the EO mentions commercial 
software [4, Sec. 4(a)], this guideline is written for all software developers, including those 
employed by the government and developers of open source software (OSS). The tech-
niques and procedures presented in this document might be used by software developers to 
verify reused software that they incorporate in their product, customers acquiring software, 
entities accepting contracted software, or a third-party lab. However, these are not the in-
tended audience of this document, since this assurance effort should be applied as early in 
the development process as possible. 
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This document presents “minimum standards.” That is, this document is not a guide 
to most effective practices or recommended practices. Instead, its purposes are to (1) set 
a lower bar for software verification by indicating techniques that developers should have 
already been using and (2) serve as a basis for mandated standards in the future. 

1.4 How Aspects of Verification Relate 

This section explains how code-based analysis and reviews relate to dynamic analysis. 
The fundamental process of dynamic testing of software is shown in Fig. 1. By the time 
the target software has reached this stage, it should have undergone static analysis by the 
compiler and other tools. In dynamic testing, the software is run on many test cases and 
the outputs are examined. One advantage of dynamic testing is that it has few, if any, false 
positives. For a general model of dynamic testing see [6, Sec. 3.5.1], which also cites 
publications. 

Fig. 1. The basic dynamic testing process is to deliver a set of test cases to the software being 
tested and examine the outputs. 

Verification must be automated in order for thousands of tests to be accurately per-
formed and for the results to be precisely checked. Automation also allows verification to 
be efficiently repeated often. 

Figure 2 provides more details about the process of gaining assurance of software. It 
shows that some test cases result from a combination of the current set of test cases and 
from analysis of the code, either entirely by static consideration of the software or by 
analysis of coverage during test case execution. Sections 2.6 and 2.7 briefly discuss black 
box and code-based test cases. 

Code analysis examines the code itself to check that it has desired properties, to identify 
weaknesses, and to compute metrics of test completeness. It is also used to diagnose the 
cause of faults discovered during testing. See Sec. 3.6 for details. 

This analysis can determine which statements, routines, paths, etc., were exercised by 
tests and can produce measures of how complete testing was. Code analysis can also mon-
itor for faults such as exceptions, memory leaks, unencrypted critical information, null 
pointers, SQL injection, or cross-site scripting. 

During testing, such hybrid analysis can also drive active automatic testing, see Secs. 2.9 
and 2.10, and is used for Interactive Application Security Testing (IAST). Runtime Appli-
cation Self-Protection (RASP) monitors the program during operation for internal security 
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Fig. 2. A more elaborate diagram of the verification process adding how some test cases are 
generated and showing how code analysis fits. 

faults before they become system failures. IAST and RASP may also scrutinize the output, 
for example, for sensitive data being transmitted that is not encrypted. 

1.5 Document Outline 

Section 2 begins with a succinct guideline recommending a minimum standard of tech-
niques for developers to use to verify their software. It then expands on the techniques. 
Section 3 is informative. That is, it is not part of the recommended minimum. It pro-
vides background and supplemental material about the techniques, including references, 
more thorough variations and alternatives, and example tools. Section 4 summarizes how 
software must and can be built well from the beginning. Finally, Sec. 5 lists materials we 
consulted for this document. 

2. Recommended Minimum Standard for Developer Testing 

Gaining assurance that software does what its developers intended and is sufficiently free 
from vulnerabilities—either intentionally designed into the software or accidentally in-
serted at any time during its life cycle—requires the use of many interrelated techniques. 
This guideline recommends the following minimum standard for developer testing: 

• Do threat modeling (see Sec. 2.1). 
Using automated testing (Sec. 2.2) for static and dynamic analysis, 

• Do static (code-based) analysis 
– Use a code scanner to look for top bugs (2.3). 

– Use heuristic tools to look for hardcoded secrets and identify small sections of 
software that may warrant focused manual code reviews (2.4). 
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• Do dynamic analysis (i.e., run the program) 
– Run the program with built-in checks and protections (2.5). 
– Create “black box” test cases, e.g., from specifications, input boundary analysis, 

and those motivated by threat modeling (2.6). 
– Create code-based (structural) test cases. Add cases as necessary to reach at 

least 80 % coverage (2.7). 
– Use test cases that were designed to catch previous bugs (2.8). 

– Run a fuzzer (2.9). If the software runs a web service, run a web application 
scanner, too (2.10). 

• Correct the “must fix” bugs that are uncovered and improve the process to prevent 
similar bugs in the future, or at least catch them earlier [2, RV.3]. 

• Use similar techniques to gain assurance that included libraries, packages, services, 
etc., are no less secure than the code (2.11). 

The rest of this section provides additional information about each aspect of the recom-
mended minimum standard. 

2.1 Threat Modeling 

We recommend using threat modeling early in order to identify design-level security issues 
and to focus verification. Threat-modeling methods create an abstraction of the system, 
profiles of potential attackers, including their goals and methods, and a catalog of poten-
tial threats [7]. See also [8]. Shevchenko et. al. [7] lists twelve threat-modeling methods, 
pointing out that software needs should drive the method(s) used. Threat modeling should 
be done multiple times during development, especially when developing new capabilities, 
to capture new threats and improve modeling [9]. The DoD Enterprise DevSecOps Ref-
erence Design document of August 2019 includes a diagram of how threat modeling fits 
into software development (Dev), security (Sec), and operations (Ops) [10, Fig. 3]. De-
vSecOps is an organizational software engineering culture and practice focused on unifying 
development, security, and operations aspects related to software. 

Test cases should be more comprehensive in areas of greatest consequences, as indi-
cated by the threat assessment or threat scenarios. Threat modeling can also indicate which 
input vectors are of most concern. Testing variations of these particular inputs should be 
higher priority. Threat modeling may reveal that certain small pieces of code, typically less 
than 100 lines, pose significant risk. Such code may warrant manual code review to answer 
specific questions such as, “does the software require authorization when it should?” and 
“do the software interfaces check and validate input?” See Sec. 3.7 for more on manual 
reviews. 

2.2 Automated Testing 

Automated support for verification can be as simple as a script that reruns static analysis, 
then runs the program on a set of inputs, captures the outputs, and compares the outputs 
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to expected results. It can be as sophisticated as a tool that sets up the environment, runs 
the test, then checks for success. Some test tools drive the interface to a web-enabled 
application, letting the tester specify high-level commands, such as “click this button” or 
“put the following text in a box” instead of maneuvering a mouse pointer to a certain place 
on a rendered screen and passing events. Advanced tools produce reports of what code 
passes their tests or summaries of the number of tests passed for modules or subsystems. 

We recommend automated verification to 
• ensure that static analysis does not report new weaknesses, 
• run tests consistently, 
• check results accurately, and 
• minimize the need for human effort and expertise. 

Automated verification can be integrated into the existing workflow or issue tracking sys-
tem [2, PO.3]. Because verification is automated, it can be repeated often, for instance 
upon every commit or before an issue is retired. 

2.3 Code-Based, or Static, Analysis 

Although there are hybrids, analysis may generally be divided into two approaches: 1) 
code-based or static analysis (e.g., Static Application Security Testing—SAST) and 2) 
execution-based or dynamic analysis (e.g., Dynamic Application Security Testing—DAST). 
Pure code-based analysis is independent of program execution. A static code scanner rea-
sons about the code as written, in somewhat the same fashion as a human code reviewer. 
Questions that a scanner may address include: 

• Does this software always satisfy the required security policy? 
• Does it satisfy important properties? 
• Would any input cause it to fail? 
We recommend using a static analysis tool to check code for many kinds of vulner-

abilities, see Sec. 3.9, and for compliance with the organization’s coding standards. For 
multi-threaded or parallel processing software, use a scanner capable of detecting race 
conditions. See Sec. 3.6 for example tools and more guidelines. 

Static scanners range in sophistication from simply searching for any use of a depre-
cated function to looking for patterns indicating possible vulnerabilities to being able to 
verify that a piece of code faithfully implements a communication protocol. In addition to 
closed source tools, there are powerful free and open source tools that provide extensive 
analyst aids, such as control flows and data values that lead to a violation. 

Static source code analysis should be done as soon as code is written. Small pieces of 
code can be checked before large executable pieces are complete. 

2.4 Review for Hardcoded Secrets 

We recommend using heuristic tools to examine the code for hardcoded passwords and 
private encryption keys. Such tools are feasible since functions or services taking these as 
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parameters have specific interfaces. Dynamic testing is unlikely to uncover such unwanted 
code. 

While the primary method to reduce the chance of malicious code is integrity measures, 
heuristic tools may assist by identifying small sections of code that are suspicious, possibly 
triggering manual review. 

Section 3.7 lists additional properties that might be checked during scans or reviews. 

2.5 Run with Language-Provided Checks and Protection 

Programming languages, both compiled and interpreted, provide many built-in checks and 
protections. Use such capabilities both during development and in the software shipped [2, 
PW.6.2]. Enable hardware and operating system security and vulnerability mitigation 
mechanisms, too (see Sec. 3.1). 

For software written in languages that are not memory-safe, consider using techniques 
that enforce memory safety (see Sec. 3.2). 

Interpreted languages typically have significant security enforcement built-in, although 
additional measures can be enabled. In addition, you may use a static analyzer, sometimes 
called a “linter,” which checks for dangerous functions, problematic parameters, and other 
possible vulnerabilities (see Sec. 3.6). 

Even with these checks, programs must be executed. Executing all possible inputs is 
impossible except for programs with the tiniest input spaces. Hence, developers must select 
or construct the test cases to be used. Static code analysis can add assurance in the gaps 
between test cases, but selective test execution is still required. Many principles can guide 
the choice of test cases. 

2.6 Black Box Test Cases 

“Black box” tests are not based on the implementation or the particular code. Instead, 
they are based on functional specifications or requirements, negative tests (invalid inputs 
and testing what the software should not do) [11, p. 8-5, Sec. 8.B], denial of service and 
overload, described in Sec. 3.8, input boundary analysis, and input combinations [12, 13]. 

Tests cases should be more comprehensive in areas indicated as security sensitive or 
critical by general security principles. 

If you can formally prove that classes of errors cannot occur, some of the testing de-
scribed above may not be needed. Additionally, rigorous process metrics may show that 
the benefit of some testing is small compared to the cost. 

2.7 Code-Based Test Cases 

Code-based, or structural, test cases are based on the implementation, that is, the specifics 
of the code. For instance, suppose the software is required to handle up to one million 
items. The programmer may decide to implement the software to handle 100 items or 
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fewer in a statically-allocated table but dynamically allocate memory if there are more than 
100 items. For this implementation, it is useful to have cases with exactly 99, 100, and 
101 items in order to test for bugs in switching between approaches. Memory alignment 
concerns may indicate additional tests. These important test cases could not have been 
determined by only considering the specifications. 

Code-based test cases may also come from coverage metrics. As hinted at in Fig. 2, 
when tests are run, the software may record which branches, blocks, function calls, etc., 
in the code are exercised or “covered.” Tools then analyze this information to compute 
metrics. Additional test cases can be added to increase coverage. 

Most code should be executed during unit testing. We recommend that executing the 
test suite achieves a minimum of 80 % statement coverage [14] (see Sec. 3.3). 

2.8 Historical Test Cases 

Some test cases are created specifically to show the presence (and later, the absence) of 
a bug. These are sometimes called “regression tests.” These test cases are an important 
source of tests before the process is mature enough to cover them. That is, until a “first 
principles” assurance approach is adopted that would have detected the bug. An even better 
option is adoption of an assurance approach, such as choice of language, that precludes the 
bug entirely. 

Inputs recorded from production operations may also be good sources of test cases. 

2.9 Fuzzing 

We recommend using a fuzzer, see Sec. 3.4, which performs automatic active testing. That 
is, fuzzers create huge numbers of inputs during testing. Typically only a tiny fraction of 
the inputs trigger code problems. 

In addition, these tools only perform a general check to determine that the software 
handled the test correctly. Typically, only broad output characteristics and gross behavior, 
such as application crashes, are monitored. 

The advantage of generality is that such tools can try an immense number of inputs with 
minimal human supervision. The tools can be programmed with inputs that often reveal 
bugs, such as very long or empty inputs and special characters. 

2.10 Web Application Scanning 

If the software provides a web service, use a dynamic application security testing (DAST) 
or Interactive Application Security Testing (IAST) tool, e.g., web application scanner, see 
Sec. 3.5, to detect vulnerabilities. 

As with fuzzers, web app scanners create inputs as they run. A web app scanner mon-
itors for general unusual behavior. A hybrid or IAST tool may also monitor program exe-
cution for internal faults. When an input causes some detectable anomaly, the tool can use 
variations of the input to probe for failures. 
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2.11 Check Included Software Components 

Use the verification techniques recommended in this section to gain assurance that included 
code is at least as secure as code developed locally [2, PW.3]. Some assurance may come 
from self-certification or partially self-certified information, such as the Core Infrastructure 
Initiative (CII) Best Practices badge [15] or trusted third-party examination. 

The components of the software must be continually monitored against databases of 
known vulnerabilities; a new vulnerability in existing code may be reported at any time. 

A Software Composition Analysis (SCA) or Origin Analyzer (OA) tool can help you 
identify what open source libraries, suites, packages, bundles, kits, etc., the software uses. 
These tools can aid in determining what software is really imported, identifying reused 
software (including open source software), and noting software that is out of date or has 
known vulnerabilities (see Sec. 3.10). 

3. Background and Supplemental Information About Techniques 

This section is informative, not part of the recommended minimum. It provides more details 
about techniques and approaches. Subsections include information such as variations, ad-
ditional cautions and considerations, example tools, and tables of related standards, guides, 
or references. 

3.1 Supplemental: Built-in Language Protection 

Programming languages have various protections built into them that preclude some vul-
nerabilities, warn about poorly written or insecure code, or protect programs during exe-
cution. For instance, many languages are memory-safe by default. Others only have flags 
and options to activate their protections. All such protections should be used as much as 
possible [2, PW.6.2]. 

For instance, gcc has flags that enable 
• run-time buffer overflow detection, 
• run-time bounds checking for C++ strings and containers, 
• address space layout randomization (ASLR), 
• increased reliability of stack overflow detection, 
• stack smashing protector, 
• control flow integrity protection, 
• rejection of potentially unsafe format string arguments, 
• rejection of missing function prototypes, and 
• reporting of many other warnings and errors. 
Similarly, the Visual Studio 2019 option “/sdl” enables checks comparable to those 

described above for gcc. 
Interpreted languages typically have significant security enforcement built-in, although 

additional measures can be enabled. As an example of an interpreted language, Perl has a 
“taint” mode, enabled by the “-T” command line flag, that “turns on various checks, such as 
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checking path directories to make sure they aren’t writable by others.” [16, 10.2]. The “-w” 
command line option helps as do other measures explained in the Perl security document, 
perlsec [17]. JavaScript has a “use strict” directive “to indicate that the code should be 
executed in “strict mode.” With strict mode, you cannot, for example, use undeclared 
variables.” [18] 

In addition, you may use a static analyzer, sometimes called a “linter,” to check for 
dangerous function or problematic parameters in interpreted languages (see Sec. 3.6). 

In addition to capabilities provided by the language itself, you can use hardware (HW) 
and operating system (OS) mechanisms to ensure control flow integrity, for instance, Intel’s 
Control-flow Enforcement Technology (CET) or ARM Pointer Authentication and landing 
points. There are compiler options that create opcodes so that if the software is running on 
hardware, operating systems, or processes with these enabled, these mechanisms will be 
invoked. All x86 and ARM chips in production have and will have this capability. Most 
OSs now support it. 

Users should also take advantage of HW and OS mechanisms as they update technol-
ogy by ensuring the HW or OS that they are upgrading to include these HW-based features. 
These mechanisms help prevent memory corruption bugs that are not detected by verifica-
tion during development from being exploited. 

Technique, Principle, or Directive Reference 
“Applying warning flags” [11, p. 8-4, Sec. 8.B] 
Using stack protection [19] 
Prevent execution of data memory Principle 17 [20, p. 9] 

Table 1. Related Standards, Guides, or References for Built-in Language Protection 

3.2 Supplemental: Memory-Safe Compilation 

Some languages, such as C and C++, are not memory-safe. A minor memory access error 
can lead to vulnerabilities such as privilege escalation, denial of service, data corruption, 
or exfiltration of data. 

Many languages are memory-safe by default but have mechanisms to disable those 
safeties when needed, e.g., for critical performance requirements. Where practical, use 
memory-safe languages and limit disabling memory safety mechanisms. 

For software written languages that are not memory-safe, consider using automated 
source code transformations or compiler techniques that enforce memory safety. 

Requesting memory mapping to a fixed (hardcoded) address subverts address space 
layout randomization (ASLR). This should be mitigated by enabling appropriate compile 
flag(s) (see Sec. 3.1). 

Example Tools 
Baggy Bounds Checking, CodeHawk, SoftBoundCETS, and WIT. 
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Technique, Principle, or Directive Reference 
“Applying warning flags” [11, p. 8-4, Sec. 8.B] 
using stack protection [19] 
Element A “avoid/detect/remove specific types of vulnera-
bilities at the implementation stage” 

[21, p. 9–12] 

FPT AEX EXT.1 Anti-Exploitation Capabilities “The ap-
plication shall not request to map memory at an explicit ad-
dress except for [assignment: list of explicit exceptions].” 

[22] 

Table 2. Related Standards, Guides, or References for Memory-Safe Compilation 

3.3 Supplemental: Coverage Metrics 

Exhaustive testing is intractable for all but the simplest programs, yet thorough testing is 
necessary to reduce software vulnerabilities. Coverage criteria are a way to define what 
needs to be tested and when the testing objective is achieved. For instance, “statement cov-
erage” measures the statements in the code that are executed at least once, i.e., statements 
that are “covered.” 

Checking coverage identifies parts of code that have not been thoroughly tested and 
are thus are more likely to have bugs. The percentage of coverage, e.g., 80 % statement 
coverage, is one measure of the thoroughness of a test suite. Test cases can be added to 
exercise code or paths that were not executed. Low coverage indicates inadequate testing, 
but very high code coverage guarantees little [14]. 

Statement coverage is the weakest criterion widely used. For instance, consider an 
“if” statement with only a “then” branch, that is without an “else” branch. Knowing that 
statements in the “then” branch were executed does not guarantee that any test explored 
what happens when the condition is false and the body is not executed at all. “Branch 
coverage” requires that every branch is taken. In the absence of early exits, full branch 
coverage implies full block coverage, so it is stronger than block coverage. Data flow and 
mutation are stronger coverage criteria [23]. 

Most generally, “. . . all test coverage criteria can be boiled down to a few dozen criteria 
on just four mathematical structures: input domains, graphs, logic expressions, and syntax 
descriptions (grammars).” [1, p. 26, Sec. 2.4] An example of testing based on input domains 
is combinatorial testing [12, 13], which partitions the input space into groups and tests 
all n-way combinations of the groups. Block, branch, and data flow coverage are graph 
coverage criteria. Criteria based on logic expressions, such as Modified Condition Decision 
Coverage (MCDC), require making various truth assignments to the expressions. 

Syntax description criteria are exemplified by mutation testing that deliberately and 
systematically creates software variants with small syntactic changes that are likely to be 
errors. For instance, the “less than” operator (<) might be replaced by “greater than or 
equal to” (>=). If a test set distinguishes the original program from each slight variation, 
the test set is exercising the program adequately. Mutation testing can be applied to speci-
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fications as well as programs. 
Note: the code may be compiled with certain flags to measure coverage, then compiled 

again with different flags for shipment. There needs to be assurance that the source and any 
included binaries used to build the shipped products match those verified and measured for 
coverage. 

Technique, Principle, or Directive Reference 
“Test coverage analyzer” [11, p. 8-6, Sec. 8.B] 
“Relevant Metrics” [24] 
[ST3.4] “Leverage coverage analysis” [25, p. 78] 

Table 3. Related Standards, Guides, or References for Coverage Metrics 

3.4 Supplemental: Fuzzing 

Fuzzers and related automated randomized test generation techniques are particularly use-
ful when run often during software development. Continuous fuzzing on changing code 
bases can help catch unexpected bugs early. “Fuzz testing is effective for finding vul-
nerabilities because most modern programs have extremely large input spaces, while test 
coverage of that space is comparatively small” [26]. Pre-release fuzzing is particularly 
useful, as it denies malicious parties use of the very same tool to find bugs to exploit. 

Fuzzing is a mostly automated process which may have relatively modest ongoing man-
ual labor. It usually requires a harness to feed generated inputs to the software under test. 
In some case, unit test harnesses may be used. Fuzzing is computationally-intensive and 
yields best results when performed at scale. 

Fuzzing components separately can be efficient and improve code coverage. In this 
case, the entire system must also be fuzzed as one to investigate whether components work 
properly when used together. 

One key benefit of fuzzing is that it typically produces actual positive tests for bugs, 
not just static warnings. When a fuzzer finds a failure, the triggering input can be saved 
and added to the regular test corpus. Developers can use the execution trace leading to 
the failure to understand and fix the bug. This may not be the case when failures are non-
deterministic, for instance, in the presence of threads, multiple interacting processes, or 
distributed computing. 

Fuzzing approaches can be grouped into two categories based on how they create input: 
mutation based and generation based. That is, mutation-based fuzzing modifies existing 
inputs, e.g., from unit tests, to generate new inputs. Generation-based fuzzing produces 
random inputs from a formal grammar that describes well-formed inputs. Using both gains 
the advantages of both mutation and generation fuzzers. Using both approaches can cover a 
larger set of test case scenarios, improve code coverage, and increase the chance of finding 
vulnerabilities missed by techniques such as code reviews. 

Mutation-based fuzzing is easy to set up since it needs little or no description of the 
structure. Mutations to existing inputs may be random or may follow heuristics. Unguided 
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fuzzing typically shallowly explores execution paths. For instance, completely random 
inputs to date fields are unlikely to be valid. Even most random inputs that are two-digit 
days (DD), three-letter month abbreviations (Mmm), and four-digit years (YYYY) will 
be rejected. Constraining days to be 1–31, months to be Jan, Feb, Mar, etc., and years 
to be within 20 years of today may still not exercise leap-century calculations or deeper 
logic. Generation-based fuzzing can pass program validation to achieve deeper testing but 
typically requires far more time and expertise to set up. 

Modern mutation-based fuzzers explore execution paths much deeper than unguided 
fuzzers by using methods such as instrumentation and symbolic execution to take paths 
that have not yet been explored. Coverage-guided fuzzers, such as AFL++, Honggfuzz, 
and libFuzzer, aim at maximizing code coverage. 

To further improve effectiveness, design review, which should be first done near the 
beginning of development, may indicate which input vectors are of most concern. Fuzzing 
these particular inputs should be prioritized. 

Fuzzing is often used with special instrumentation to increase the likelihood of detect-
ing faults. For instance, memory issues can be detected by tools such as Address Sanitizer 
(ASAN) or Valgrind. This instrumentation can cause significant overhead but enables de-
tection of out-of-bounds memory access even if the fault would not cause a crash. 

Example Tools 
American Fuzzy Lop Plus Plus (AFL++), Driller, dtls-fuzzer, Eclipser, Honggfuzz, 

Jazzer, libFuzzer, Mayhem, Peach, Pulsar, Radamsa, and zzuf. 

Technique, Principle, or Directive Reference 
PW.8: Test Executable Code to Identify Vulnerabilities and 
Verify Compliance with Security Requirements 

[2] 

“Fuzz testing” [11, p. 8-5, Sec. 8.B] 
Malformed Input Testing (Fuzzing) [27, slide 8] 
[ST2.6] “Perform fuzz testing customized to application 
API” 

[25, p. 78] 

Table 4. Related Standards, Guides, or References for Fuzzing 

3.5 Supplemental: Web Application Scanning 

DAST and IAST tools, such as web app scanners, test software in operation. Such tools 
may be integrated with user interface (UI) and rendering packages so that the software 
receives button click events, selections, and text submissions in fields, exactly as it would 
in operation. These tools then monitor for subtle hints of problems, such as an internal 
table name in an error message. Many web app scanners include fuzzers. 

Internet and web protocols require a huge amount of complex processing that have 
historically been a source of serious vulnerabilities. 
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Penetration testing is a “test methodology in which assessors, typically working under 
specific constraints, attempt to circumvent or defeat the security features of an information 
system.” [28]. That is, it is humans using tools, technologies, and their knowledge and 
expertise to simulate attackers in order to detect vulnerabilities and exploits. 

Example Tools 
Acunetix, AppScan, AppSpider, Arachni, Burp, Contrast, Grabber, IKare, Nessus, Pro-

bely, SQLMap, Skipfish, StackHawk, Vega, W3af, Wapiti, WebScarab, Wfuzz, and Zed 
Attack Proxy (ZAP). 

Technique, Principle, or Directive Reference 
“Web application scanner” [11, p. 8-5, Sec. 8.B] 
“Security Testing in the Test/Coding Phase,” subsection 
“System Testing” 

[24] 

[ST2.1] “Integrate black-box security tools into the QA 
process” 

[25, p. 77] 

3.12.1e “Conduct penetration testing [Assignment: 
organization-defined frequency], leveraging automated 
scanning tools and ad hoc tests using subject matter 
experts.” 

[29] 

Table 5. Related Standards, Guides, or References for Web Application Scanning 

3.6 Supplemental: Static Analysis 

Static analysis or Static Application Security Testing (SAST) tools, sometimes called “scan-
ners,” examine the code, either source or binary, to warn of possible weaknesses. Use of 
these tools enable early, automated problem detection. Some tools can be accessed from 
within an Integrated Development Environment (IDE), providing developers with imme-
diate feedback. Scanners can find issues such as buffer overflows, SQL injections, and 
noncompliance with an organization’s coding standards. The results may highlight the pre-
cise files, line numbers, and even execution paths that are affected to aid correction by 
developers. 

Organizations should select and standardize on static analysis tools and establish lists 
of “must fix” bugs based on their experience with the tool, the applications under devel-
opment, and reported vulnerabilities. You may consult published lists of top bugs (see 
Sec. 3.9) to help create a process-specific list of “must fix” bugs. 

SAST scales well as tests can be run on large software and can be run repeatedly, as 
with nightly builds for the whole system or in developers’ IDE. 

SAST tools have weaknesses, too. Certain types of vulnerabilities are difficult to find, 
such as authentication problems, access control issues, and insecure use of cryptography. 
In almost all tools, some warnings are false positives, and some are insignificant in the 
context of the software. Further, tools usually cannot determine if a weakness is an actual 
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vulnerability or is mitigated in the application. Tool users should apply warning suppres-
sion and prioritization mechanisms provided by tools to triage the tool results and focus 
their effort on correcting the most important weaknesses. 

Scanners have different strengths because of code styles, heuristics, and relative impor-
tance classes of vulnerabilities have to the process. You can realize the maximum benefit 
by running more than one analyzer and paying attention to the weakness classes for which 
each scanner is best. 

Many analyzers allow users to write rules or patterns to increase the analyzer’s benefit. 

Example Tools 
Astrée, Polyspace Bug Finder, Parasoft C/C++test, Checkmarx SAST, CodeSonar, Cover-

ity, Fortify, Frama-C, Klocwork, SonarSource, and SonarQube handle many common com-
piled languages. 

For JavaScript, JSLint, JSHint, PMD, and ESLint. 

Technique, Principle, or Directive Reference 
PW.8: Test Executable Code to Identify Vulnerabilities and 
Verify Compliance with Security Requirements 

[2] 

“Source code quality analyzers” 
“Source code weakness analyzers” [11, p. 8-5, Sec. 8.B] 
[CR1.4] “Use automated tools along with manual review” 
[CR2.6] “Use automated tools with tailored rules” [25, pp. 75–76] 

Table 6. Related Standards, Guides, or References for Static Analysis 

3.7 Supplemental: Human Reviewing for Properties 

As discussed in Sec. 3.6, static analysis tools scan for many properties and potential prob-
lems. Some properties are poorly suited to computerized recognition, and hence may war-
rant human examination. This examination may be more efficient with scans that indicate 
possible problems or locations of interest. 

Someone other than the original author of the code may review it to ensure that it 
• performs bounds checks [19], 
• sets initial values for data [19], 
• only allows authorized users to access sensitive transactions, functions, and data [30, 

p. 10, Sec. 3.1.2] (may include check that user functionality is separate from system 
management functionality [30, p. 37, Sec. 3.13.3]), 

• limits unsuccessful logon attempts [30, p. 12, Sec. 3.1.8], 
• locks a session after period of inactivity [30, p. 13, Sec. 3.1.10], 
• automatically terminates session after defined conditions [30, p. 13, Sec. 3.1.11], 
• has an architecture that “promote[s] effective information security within organiza-

tional systems” [30, p. 36, Sec. 3.13.2], 
• does not map memory to hardcoded locations, see Sec. 3.2, 
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• encrypts sensitive data for transmission [30, p. 14, Sec. 3.1.13] and storage [30, p. 15, 
Sec. 3.1.19]. 

• uses standard services and application program interfaces (APIs) [2, PW.4], 
• has a secure default configuration [2, PW.9], and 
• has a up-to-date documented interface. 
A documented interface includes the inputs, options, and configuration files. The inter-

face should be small, to reduce the attack surface [31, p. 15]. 
Threat modeling may indicate that certain code poses significant risks. A focused man-

ual review of small pieces, typically less than 100 lines, of code may be beneficial for 
the cost. The review could answer specific questions. For example, does the software re-
quire authorization when it should? Do the software interfaces contain input checking and 
validation? 

Technique, Principle, or Directive Reference 
“Focused manual spot check” [11, p. 5-6, Sec. 5.A] 
3.14.7e “Verify the correctness of [Assignment: 
organization-defined security critical or essential software, 
firmware, and hardware components] using [Assignment: 
organization-defined verification methods or techniques] 

[29] 

Table 7. Related Standards, Guides, or References for Human Reviewing for Properties 

3.8 Supplemental: Sources of Test Cases 

Typically, tests are based on specifications or requirements, which are designed to ensure 
the software does what it is supposed to, and process experience, which are designed to 
ensure previous bugs do not reappear. Additional test cases may be based on the following 
principles: 

• Threat modeling—concentrate on areas with highest consequences, 
• General security principles—find security vulnerabilities, such as failure to check 

credentials, since these often do not cause operational failures (crashes or incorrect 
output), 

• Negative tests—make sure that software behaves reasonably for invalid inputs and 
that it does not do what it should not do, for instance ensure that a user cannot perform 
operations for which they are not authorized [11, p. 8-5, Sec. 8.B], 

• Combinatorial testing—find errors occurring when handling certain n-tuples of kinds 
of input [12, 13], and 

• Denial of service and overload—make sure software is resilient. 
Denial of service and overload tests are also called stress testing. Also consider algo-

rithmic attacks. Algorithms may work well with a typical load or expected overload, but 
an attacker may cause a load many orders of magnitude higher than would ever occur in 
actual use. 
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Monitor execution and output during negative testing especially, such as with Inter-
active Application Security Testing (IAST) tools or Runtime Application Self-Protection 
(RASP). 

Technique, Principle, or Directive Reference 
“Simple attack modeling” 
“Negative testing” [11, pp. 8-4 and 8-5, 

Sec. 8.B] 
“Security Testing in the Test/Coding Phase,” subsection 
”Unit Testing” and subsection “System Testing” 
“Security Testing Activities,” subsection “Risk Analysis” [24] 
AM1.2 “Create a data classification scheme and inventory” 
AM1.3 “Identify potential attackers” 
AM2.1 “Build attack patterns and abuse cases tied to po-
tential attackers” 
AM2.2 “Create technology-specific attack patterns” 
AM2.5 “Build and maintain a top N possible attacks list” 
AM3.2 “Create and use automation to mimic attackers” [25, pp. 67–68] 
[ST1.1] “Ensure QA performs edge/boundary value condi-
tion testing” 
[ST1.3] “Drive tests with security requirements and secu-
rity features” 
[ST3.3] “Drive tests with risk analysis results” [25, pp. 77–78] 
[SE1.1] “Use application input monitoring” 
[SE3.3] “Use application behavior monitoring and diagnos-
tics” 

[25, pp. 80 and 82] 

3.11.1e Employ [Assignment: organization-defined 
sources of threat intelligence] as part of a risk assessment 
to guide and inform the development of organizational 
systems, security architectures, selection of security 
solutions, monitoring, threat hunting, and response and 
recovery activities 
3.11.4e Document or reference in the system security plan 
the security solution selected, the rationale for the security 
solution, and the risk determination 

[29] 

Table 8. Related Standards, Guides, or References for Sources of Test Cases 

3.9 Supplemental: Top Bugs 

There are many collections of high priority bugs and weaknesses, such as those identified 
in the Common Weakness Enumeration (CWE)/SANS Top 25 Most Dangerous Software 
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Errors [32, 33], the CWE Weaknesses on the Cusp [34], or the Open Web Application 
Security Project (OWASP) Top 10 Web Application Security Risks [35]. 

These lists, along with experience with bugs found, can help developers begin choosing 
bug classes to focus on during verification and process improvement. 

Technique, Principle, or Directive Reference 
“UL and Cybersecurity” [27, slide 8] 
For security “Code Quality Rules” lists 36 “parent” CWEs 
and 38 “child” CWEs. For reliability, it lists 35 “parent” 
CWEs and 39 “child” CWEs. 

[36] [37] 

Table 9. Related Standards, Guides, or References for Top Bugs 

3.10 Supplemental: Checking Included Software for Known Vulnerabilities 

You need to have as much assurance for included code, e.g., close source software, free and 
open source software, libraries, and packages, as for code you develop. If you lack strong 
guarantees, we recommend as much testing of included code as of the code. 

Earlier versions of packages and libraries may have known vulnerabilities that are cor-
rected in later versions. 

Software Composition Analysis (SCA) and Origin Analyzer (OA) tools scan a code 
base to identify what code is included. They also check for any vulnerabilities that have 
been reported for the included code [11, App. C.21, p. C-44]. A widely-used database of 
publicly known vulnerabilities is the NIST National Vulnerability Database (NVD), which 
identifies vulnerabilities using Common Vulnerabilities and Exposures (CVE). Some tools 
can be configured to prevent download of software that has security issues and recommend 
alternative downloads. 

Since libraries are matched against a tool’s database, they will not identify libraries 
missing from the database. 

Example Tools 
Black Duck, Binary Analysis Tool (BAT), Contrast Assess, FlexNet Code Insight, 

FOSSA, JFrog Xray, OWASP Dependency-Check, Snyk, Sonatype IQ Server, SourceClear, 
WhiteHat Sentinel SCA, and WhiteSource Bolt. 
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Technique, Principle, or Directive Reference 
“Origin Analyzer” [11, App. C.21, p. C-

44] 
“UL and Cybersecurity” [27, slide 8] 
3.4.3e Employ automated discovery and management tools 
to maintain an up-to-date, complete, accurate, and readily 
available inventory of system components 

[29] 

Table 10. Related Standards, Guides, or References for Checking Included Software for Known 
Vulnerabilities 

4. Beyond Software Verification 

Good software must be built well from the beginning. Verification is just one element in 
delivering software that meets operational security requirements. The use of the software 
assurance techniques listed above are minimum steps in improving the security of enter-
prise supply chains. Section 4.1 describes a few general software development practices 
and how assurance fits into the larger subject of secure software development and opera-
tion. Even software that has solid security characteristics can be exploited by adversaries if 
its installation, operation, or maintenance is conducted in a manner that introduces vulner-
abilities. Section 4.2 describes some trends and technologies that may improve software 
assurance. Section 4.3 describes good installation and operation principles. Both software 
development and security technologies are constantly evolving. 

4.1 Good Software Development Practices 

Ideally, software is secure by design, and the security of both the design and its imple-
mentation can be demonstrated, documented, and maintained. Software development, and 
indeed the full software development lifecycle, has changed over time, but some basic 
principles apply in all cases. NIST developed a cybersecurity white paper, “Mitigating 
the Risk of Software Vulnerabilities by Adopting a Secure Software Development Frame-
work (SSDF),” [2] that provides an overview and references about these basic principles. 
This document is part of an ongoing project; see https://csrc.nist.gov/Projects/ssdf. The 
SSDF introduces a software development framework of fundamental, sound, and secure 
software development practices based on established secure software development practice 
documents. For verification to be most effective, it should be a part of the larger software 
development process. SSDF practices are organized into four groups: 

• Prepare the Organization (PO): Ensure that the organization’s people, processes, and 
technology are prepared at the organization level and, in some cases, for each indi-
vidual project to develop secure software. 

• Protect the Software (PS): Protect all components of the software from tampering 
and unauthorized access. 
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• Produce Well-Secured Software (PW): Produce well-secured software that has min-
imal security vulnerabilities in its releases. 

• Respond to Vulnerabilities (RV): Identify vulnerabilities in software releases, re-
spond appropriately to address those vulnerabilities, and prevent similar vulnera-
bilities from occurring in the future. 

In the context of DevOps, enterprises with secure development include the following 
characteristics: 

• The enterprise creates a culture where security is everyone’s responsibility. This 
includes integrating a security specialist into the development team, training all de-
velopers to know how to design and implement secure software, and using automated 
tools that allow both developers and security staff to track vulnerabilities. 

• The enterprise uses tools to automate security checking, often referred to as Security 
as Code [38]. 

• The enterprise tracks threats and vulnerabilities, in addition to typical system metrics. 
• The enterprise shares software development task information, security threat, and 

vulnerability knowledge between the security team, developers, and operations per-
sonnel. 

4.2 Good Software Installation and Operation Practices 

As stated above, even software that has no identified security vulnerabilities can be sub-
ject to exploitation by adversaries if its installation, operation, or maintenance introduces 
vulnerabilities. Some issues that are not directly addressed in this paper include miscon-
figuration, violation of file permission policies, network configuration violations, and ac-
ceptance of counterfeit or altered software. See especially “Security Measures for Critical 
Software Use Under Executive Order (EO) 14028,” to be published, which addresses patch 
management, configuration management, and continuous monitoring among other security 
measures and lists references. 

Configuration files: Because of the differences in software applications and networking 
environments, the parameters and initial settings for many computer applications, server 
processes, and operating systems are configurable. Often, security verification fails to an-
ticipate unexpected settings. Systems and network operators often alter settings to facilitate 
tasks that are more difficult or infeasible when using restrictive settings. Particularly in 
cases of access authorization and network interfaces, changing configuration settings can 
introduce critical vulnerabilities. Software releases should include secure default settings 
and caveats regarding deviations from those settings. Security verification should include 
all valid settings and (possibly) assurance that invalid settings will be caught by run-time 
checks. The acquirer should be warned or notified that settings other than those explicitly 
permitted will invalidate developer’s security assertions. 

File Permissions: File ownership and permissions to read, write, execute, and delete 
files need to be established using the principle of least privilege. No matter how thoroughly 
software has been verified, security is compromised if it can be modified or if files can 
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be accessed by unauthorized entities. The ability to change file permissions needs to be 
restricted to explicitly authorized subjects that are authenticated in a manner that is com-
mensurate with the impact of a compromise of the software. The role of file permissions in 
maintaining security assertions needs to be explicit. 

Network configuration: Secure configuration refers to security measures that are im-
plemented when building and installing computers and network devices to reduce cyber 
vulnerabilities. Just as file permissions are critical to the continued integrity of software, so 
does network configuration constrain unauthorized access to software. Verification needs to 
cover all valid network configuration settings and (possibly) provide assurance that invalid 
settings will be caught by run-time checks. The role of network configuration in scoping 
the applicability of security assertions needs to be explicit. 

Operational configuration: Software is employed in a context of use. Addition or dele-
tion of components that are dependent on a software product or on which the product 
depends can either validate or invalidate the assumptions on which the security of software 
and system operation depend. Particularly in the case of source code, the operating code it-
self depends on components such as compilers and interpreters. In such cases, the security 
of the software can be invalidated by the other products. Verification needs to be conducted 
in an environment that is consistent with the anticipated operational configurations. Any 
dependence of the security assertions on implementing software or other aspects of oper-
ational configuration needs to be made explicit by the developer. Supply chain integrity 
must be maintained. 

4.3 Additional Software Assurance Technology 

Software verification continues to improve as new methods are developed and methods are 
adapted to changing development and operational environments. Some challenges remain, 
e.g., applying formal methods to prove the correctness of poorly designed code. Nearer-
term advances that may add to security assurance based on verification include: 

• Applying machine learning to reduce false positives from automated security scan-
ning tools and to increase the vulnerabilities that these tools can detect. 

• Adapting tools designed for automated web interface tests, e.g., Selenium, to produce 
security tests for applications. 

• Improving scalability of model-based security testing for complex systems. 
• Improving automated web-application security assessment tools with respect to: 

– Session state management 
– Script parsing 
– Logical flow 
– Custom uniform resource locators (URLs) 
– Privilege escalation 

• Applying observability tools to provide security assurance in cloud environments. 
• Adapting current security testing to achieve cloud service security assurance. 
Other techniques to reduce software vulnerabilities are described in “Dramatically Re-
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ducing Software Vulnerabilities,” NIST-IR 8151 [39]. 

5. Documents Examined 

This section lists some of the standards, guides, references, etc., that we examined to as-
semble this document. We list them to give future work an idea where to start or quickly 
learn what may have been overlooked. We group related references. 

Donna Dodson, Murugiah Souppaya, and Karen Scarfone, “Mitigating the Risk of Soft-
ware Vulnerabilities by Adopting a Secure Software Development Framework (SSDF),” 
2013 [2]. 

David A. Wheeler and Amy E. Henninger, “State-of-the-Art Resources (SOAR) for 
Software Vulnerability Detection, Test, and Evaluation 2016,” 2016 [11]. 

Steven Lavenhar, “Code Analysis,” 2008 [19]. 
C.C. Michael, Ken van Wyk, and Will Radosevich, “Risk-Based and Functional Security 
Testing,” 2013 [24]. 

UL, “IoT Security Top 20 Design Principles,” 2017 [20]. 

Tom Haigh and Carl E. Landwehr, “Building Code for Medical Device Software Secu-
rity,” 2015 [21]. 
Ulf Lindqvist and Michael Locasto, “Building Code for the Internet of Things,” 2017 [31]. 
Carl E. Landwehr and Alfonso Valdes, “Building Code for Power System Software Secu-
rity,” 2017 [40]. 

“Protection Profile for Application Software Version 1.3,” 2019 [22]. 

Ron Ross, Victoria Pillitteri, Gary Guissanie, Ryan Wagner, Richard Graubart, and 
Deb Bodeau, “Enhanced Security Requirements for Protecting Controlled Unclassified In-
formation: A Supplement to NIST Special Publication 800-171,” 2021 [29]. 
Ron Ross, Victoria Pillitteri, Kelley Dempsey, Mark Riddle, and Gary Guissanie, “Protect-
ing Controlled Unclassified Information in Nonfederal Systems and Organizations,” 2020 
[30]. 
Ron Ross, Victoria Pillitteri, and Kelley Dempsey, “Assessing Enhanced Security Require-
ments for Controlled Unclassified Information,” 2021 [41]. 

Bill Curtis, Bill Dickenson, and Chris Kinsey, “CISQ Recommendation Guide: Effec-
tive Software Quality Metrics for ADM Service Level Agreements,” 2015 [42]. 
“Coding Quality Rules,” 2021 [36]. 
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6. Glossary and Acronyms 

Term Definition 
Cybersecurity The practice of protecting systems, networks, and pro-

grams from digital attacks. 
Software Source Code The software as it is originally entered in plain text, e.g., 

human-readable alphanumeric characters. 

API Application Program Interface 
CVE Common Vulnerabilities and Exposures 
CWE Common Weakness Enumeration 
DAST Dynamic Application Security Testing 
EO Executive Order 
HW Hardware 
IAST Interactive Application Security Testing 
MISRA Motor Industry Software Reliability Association 
NIST National Institute of Standards and Technology 
NSA National Security Agency 
NVD National Vulnerability Database 
OA Origin Analyzer 
OS Operating System 
OSS Open Source Software 
OWASP Open Web Application Security Project 
RASP Runtime Application Self-Protection 
SAST Static Application Security Testing 
SCA Software Composition Analysis 
SDLC Software Development Life Cycle 
SSDF Secure Software Development Framework 
URL Uniform Resource Locator 
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